2019 New Stuff

In this issue of the Tuesday Technical, you will find a round-up of some great innovative ideas from recent trade events such as the Mobile World Congress, Aid and Trade and the Emergency Telecoms Cluster open day. We will also take a close look into a great product from the Finance Technology Sector (known as “FINTECH”) which could potential save money for the frequent travellers who work in the aid sector.

In this issue of the Tuesday Technical, you will find a round-up of some great innovative ideas from recent trade events such as the Mobile World Congress, Aid and Trade and the Emergency Telecoms Cluster open day. We will also take a close look into a great product from the Finance Technology Sector (known as “FINTECH”) which could potential save money for the frequent travellers who work in the aid sector.

Fintech: For the longest time, the banking sector has made huge sums of money from Aid workers as they move from country to country. Whether its hard cash being changed to a different currency or we use debit or credit cards, it’s the bank who always win. The new Fintech companies are starting to challenge traditional banks. MPESA is a great example where mobile money changed the way people got paid and settled bills in Kenya.

For international travellers, there is now a great solution known as the borderless account from Transferwise. This new type of account allows the account holder to keep multiple currencies linked to a single debit card (facilitated by the Mastercard network). The debit card can be used to pay for items or to draw cash from an ATM.  The debit card can be topped up online via a bank transfer in many leading currencies. Once funds have been added to the Transferwise account, they can be converted to a wide range of other currencies using the mid-market standard rate (which is the same as currencies listed on XE.com) Here is an example of what rates would look like at today’s rates using Transferwise vs other accounts:

£100 buys $125.84 via Transferise (Including a fee of £0.92), $123.23 via Barclays Bank and $124,18 via Travelex.

Another benefit with Transferwise is that with each account, you will get a local bank account for each currency. On my Transferwise account, I have a USD balance with its own USA bank account information. This is now starting to save me money as when I am paid expenses in USD, I have the choice of keeping the cash in USD for future use or switching to GBP or EUROS at competitive rates. This could be a great money saver for those who get paid in one currency but live in a location which uses another currency. In April, my bank charged me at a rate of 1.34 to change USD to GBP, where Transferwise was 1.30 ! 

For more information, please visit https://transferwise.com

Solar Cow station

Power for the communities: One of the things which really frustrate me in the energy sector is when I get some smooth sales pitch from so-called inventors who claims to have a unique idea to solve energy in the Global South. As we approach the end of the sale pitch and we approach the great reveal, the solution often turns out to be yet another solar lantern. Whilst solar lanterns are really useful, this concept is so mainstream now that innovators need to stop pushing the solar lantern as something new!

So as you can imagine, with my scepticism around this portable energy area it does take something special to grab my attention. At the London Aid and Trade show this year, Yolk, a company based in Korea  has developed the “Electric Cow”. This is an innovative way to get small amounts of energy to families in return for allowing their children to attend school. This is how it works:

The system is very simple. A solar panel is built onto a frame which is made in the shape of a cow. The udder underneath (see photo) is a docking station to charge small batteries. When a child arrives at school for the day, he/she will place the battery in the dock. Here the attendance of the children is logged and the battery will be charged during the day. Each battery has a unique code which enables the child to be identified.

At the end of the day, the child takes the battery home where it can be used to power a LED light for three hours or charge a mobile phone. It’s a simple idea, but one which can have a sustainable impact on communities as batteries can be replaced by the school as and when they wear out. See more at http://yolkstation.com/solar-cow-project/

Innovation in communication: Push To Talk (PPT) is a well-known open method used to communicate in an open setting. This is where one station transmits by pushing a button, and all other people on the same channel can hear what is being said. The PTT method has its origins in radio and has been used in mainly a safety and security context. In fleet management is a great way to reach all vehicles simultaneously with important messages to multiple vehicles. In a security related situation, a PTT call can be made to ask for assistance.

PTT has been slowly declining over the years as people move to the more private direct dial calls using mobile phones. Whilst this change is great for privacy, I still believe that PTT is still the best means of communication for fleets as its simple to use, and certainly safer for drivers who might need to pass important messages whilst driving. PTT is initiated at the push of a button, where as a privately dialled call requires some attention from a driver and if answered, the message goes to one person.

The PTT method is still as relevant now as it has always been for decades. The good news is that PTT innovation is delivering some great new solutions for the aid sector. Motorola has introduced some new technology which could have some impact at a local level. Iridium introduced its satellite PTT solution a few years ago (as reported previously in the Tuesday Technical). I have an update on new iridium technology from Icom, a well-established maker of radios.

So let’s first take a look at what Motorola is doing.  

The new TLK100 looks like a radio and works like a PTT radio, but it’s not a radio! It uses the internet to establish talk channels through either its built in WiFi or GSM SIM card. With additional infrastructure, these devices can communicate with traditional VHF radios. But if you wanted to run a small radio network locally over WiFi hotspots or a larger network over a wide area via the cell network, this solution has some advantages over radio as follows;

  • Unlike VHF radio, PTT over the internet is private.
  • Radio licenses are not required.
  • Communications cover could be better than VHF as it relies on internet connections rather than a single base radio station.

VHF has a limitation of cover; roughly 20KM max. Traditionally where PTT radio has been needed beyond the range of an urban setting, HF radio from manufacturers such as Codan and Barret would be used. HF has not been a massive success due to its complex nature. But in areas where mobile phone networks are reliable, the TLK100 could be a suitable option.

Finally, it is also possible to download an app from Motorola so that a standard mobile phone can be used to communicate with TLK100 handsets over the internet!

So let’s look at take a look at what Iridium has been doing in the PTT area recently.

Towards the end of 2018, Iridium complete its launch series and now have a completely new satellite constellation in place. A couple of years ago, Iridium launched its PTT service as part of the new satellite fleet. There are also plans to improve the Iridium data offer, but we will look at this in a future edition of the Tuesday Technical.

In 2017, I tried out Iridium PTT in the UK, Nepal, USA and South Sudan. Whilst I was impressed with the technology and coverage, the audio quality from the PTT version of the Iridium Extreme satellite telephone was far from good. The problem was down to the way Iridium was trying to use the built in earpiece (designed for low volume next to the ear!) as a loud speaker. The audio distortion was so great that it made the handset almost useless. The workaround for the PTT Handset is to plug in an external microphone/handset.

So it is good news that ICOM has entered the game with its new IC-SAT100. Icom is a traditional radio manufacturer from Japan, which means that the handset looks like a radio and will operate like a radio. But as it uses the Iridium satellite network, it will have global cover without the dead spots which HF Radio users frequently experience.  

The ICOM is yet to appear on the market, and when it does, I will test the new tech and report back!

Logistics in the clouds

Responsible deployment of drones: In some regions of the world, the word “Drone” has a lot of negative meaning. Here in the UK, the use of drones brought Gatwick, one of the UK largest airports to a standstill for almost two days. In other places, military drones owned by nation states have been used to bomb people whilst small cheap domestic drones have been used by ISIS to deliver IEDs.

So the word “Drone” has a lot of negative baggage and for the same reason, UAV is getting a bad press as well, So guess what?  Some bright person has come up with a nice new acronym; UAS which stands for Unmanned Aviation Systems!

OK, let’s look at the  positive. Drones are increasingly heading towards becoming a major tool for humanitarian work. Over the past year I have seen plenty of examples ranging from aerial photography to delivering items. At the Mobile World Congress this year, one organisation was showcasing a drone cell-phone transmitter which is able to cover a wide area following a major disaster such as an earthquake.

Drone’s, UAV,s, UAS’s or whatever we might call these devices in the future are coming our way quickly. It is important that as the aid sector that we develop our organisations strategies and polices to handle this technology properly. The World Food Programme is showing some great leadership in this area by running a training course which covers the topic very thoroughly over three modules as follows:

  1. 2 days flight experience: This is the “hands on” training where students get to fly a range of UAS technologies including long range fixed wing models.
  2. 4 days data training:  This module explores what sort of data can be collected from UAS and how it can be used to inform decision makers. There is some GIS Mapping included in this module.
  3. 4 Days Regulatory & Coordination: In any country, you cannot just show up and fly. Same applies for UAS. This technology is super sensitive in some places which means that if an unregulated drone is flown, the pilot can end up in a deep trouble.  So in the model, students will cover aviation law and other hot topics such as data protection and privacy. As part of the same session, coordination is also covered. It’s much better for perhaps a small number of organisations operate drones and share data rather than NGOs filling the skies with loads of expensive and noisy hardware.

Hopefully as organisations start to build up their institutional UAS capacity, we will see this new technology being operated legally and responsibly for the benefit of the communities we all serve.

21st Century IT for humanitarian programming

IT as an industry has played a supportive role to organisations but mainly as a “back office” service. The scope of this support service has traditionally ranged from fixing personal computers for individuals to keeping large cooperate data systems such as finance, HR and document storage running. But things need to change and in fact, they are changing as the IT role starts to adapt to a new 21st century way of working. In the humanitarian space, the delivery of programmes are beginning to use more technology. This means that the programmes people will require expert advice about technology to build and then run successful technology driven programmes.  

One of the barriers to success is that there is a disconnect between IT people and the humanitarian people who run programmes. On the IT side, they use incomprehensible language or can appear to be inflexible about how technology is delivered. The programmes people can sometimes typecast IT into a limited role thinking that all IT does is to fix computers and perhaps have little to contribute to the delivery of programmes.  

In this article, I am going to shine a spotlight on the wide range of technologies that IT teams support and then propose a model where technologist can work closely with the programmes teams to deliver great results for the populations which are supported by programmes.

The limitless scope of technology

IT is not just all about laptops and email accounts. We would not think of a hospital as a place just full of doctors. There is a range of specialists such as heart surgeons, tropical medicine experts, phycologists, pathologists, Nurses, Nuclear Medicine experts, Dietitians, radiographers just to name a few. The world of IT is similar with many specialists covering a mass of different technologies. Maybe “IT” as a brand no longer works?  Perhaps we should change it?

So using its current brand, what can the IT team bring to programmes?  Quite a lot in fact. The Tuesday Technical (and blog) has been running since 2014 and has plenty of examples of technology being used in a field setting. Here are just a few examples of where solutions go well beyond what is considered traditional IT:

UAVs (Drones): This is an emerging technology in the Humanitarian Sector. Initially smaller quad blade units have been used for aerial video, but larger UAVs have been used in search and rescue operations and to deliver medicines. The Emergency Telecoms Cluster established a new working group to work out how this new technology would be used within an emergency response setting.

Sustainable energy solutions: Technology needs electricity rights?  So who owns it?  It’s still technology and should sit within the same tech family as traditional IT. Sustainable energy is needed to run any remote tech that we might place in a remote community. Solar energy systems are often not sustainable as programme design often lacks the methods which could be used to keep systems working. But the good news is that there are now potential partners emerging which can deliver energy on a cost recover model.

In the emergency setting, as we use tech to deliver information and services to the affected communities via smart or feature phones, then we need to provide the means for people to charge their devices.

Communications and connectivity: One of the new buzz words is “Communications as aid” Whether it’s the provision of mobile phones to facilitate family reunion or Wi-Fi hots-spots, the future will see a rapid increase in the provision of communications and connectivity to the populations affected by a disaster. Providing connectivity and communications via radio, satellite or local networks has been core business in the Humanitarian IT sector and we are really good at it.

Internet of Things (IoT): In a connected world, we are starting to see a growth in a multitude of devices which are connected to the internet. Examples include real time vehicle tracking, Cold chain monitoring, and environmental sensors. This technology can be used to give early warning of water supply issues to communities or allow central support teams to monitor the health of a remote solar energy installation.

3D Printing: NGOs work in remote places which are difficult to get to. 3D printing is gaining in popularity and in a nutshell, this technology will make objects accurately. Early technologies have been able to create plastic items and potentially able to create plumbing items for WASH programmes. Technology is moving on, and more complex items can be made. Some units now print 3D objects using metal! 

There are many more examples I could give where technology can add a lot of value to programmes. These are just practical examples. There is also a huge industry of data products such as mapping (GIS), Health (HIS) and so on.

Working together as a team

The technologist need to come out of the basement and speak to the programmes experts in plain language. At the same time, the programmes experts need to open the door and let the technologist in. The good news is that we are already seeing the beginnings of this approach. But we need to keep up the momentum to get even closer so that where technology is used to support programmes, we deliver success.

My personal view is that the brand “IT” has run its course and needs to be replaced. ICT4D has gathered some support, but still not dynamic enough. “Technology for Programmes” or T4P might just do it! 

So what does T4P look like in the 21st century?  How can we bring the technologist to the programmes table?  The answer is simpler than you might think. Humanitarian programmes have been running for many decades with organisations like Save the Children approaching 100 years of aid delivery. The technologist can add much more to future programming as technology becomes more reliable and available. Here is an idea on how this can work:

Programmes teams already have a perfect model which delivers excellence. For most programmes there will be a tangible output which could be along the thematic areas of food, shelter, education, health, wash, child protection, and much more. For each of these thematic areas, programmes people will access technical experts for their input. This leads to a programme design which can then be fleshed out with a budget and implementation plan.

Technology has a role to play and I would like to see a new breed of T4P experts joining the team to work alongside all of the other thematic experts supporting the delivery of programmes. The T4P expert will need to be a good communicator and act as a broker between the programmes team/thematic experts and then the appropriate subject matter experts (SMEs) within the technology teams. Ideally with T4P experts involved in programme design from the start, we will be able to have a more positive impact where technology is needed.

IT as a function as a service provider will still be needed, but IT departments will need to expand and include a new pool of T4P talent to help deliver 21st Century programmes. There will need to be some mind-set changes. In larger organisations, more flexibility will be needed to deliver solutions to programmes as the old model of “One Size fits all” is not likely to work. T4P experts will need to build up a knowledgebase of solution so that when a new programme is considered, the following thought process is used: 

1.       For the new programme, what is their technical needs?
2.       What are we doing already in other places which is similar?  Do we already have an appropriate solution?
3.       If not, what are others doing?  Is there a solution we can buy off the shelf?
4.       And if there are no current solutions, can we build one? 

IT teams and the new breed of T4P experts will need to get out and network. Organisations like Nethope and the Emergency Telecoms Cluster are already working on beneficiary facing solutions. Though these extended networks, T4P experts can keep up to date with the new technology which is being developed which will contribute to the T4P expert becoming the Trusted Technology Expert for Programmes.











Innovation – The best of 2015

Each year I am bombarded with new ideas from various inventors, some inventions are wacky, but are still looking for a problem to be solved. Other ideas could be useful but needs a little more work. Occasionally I am shown technology which is cheap simple and makes the problems they are trying to solve just disappear. Towards the end of 2015, I attended Aidex and the Nethope Summit.  Here are a few solutions which caught my eye.

airdrop 1Airdrops: a 20th century  concept with a 21st century twist
Aviators have been throwing all sorts attached to parachutes out of the back of low flying aircraft for nearly 100 years, so what could be new?

Traditionally airdrops have been used to deliver leaflets or much larger items.  The key challenge with larger items is that if its food, medicines or other items, is that they may be damaged when the package lands. As most items may be in a cluster of large packages, some people may grab all of the items and then sell it on – not the desired intention.

In 2010 following the earthquake in Haiti, logistics was the main challenge as there was a massive requirement to ship “stuff” to the places it was needed, but airport access was a challenge – a key bottleneck which prevents aid getting to affected populations.  Access to airports have been a major challenge during a few emergencies since Haiti, so how can we bypass the airport and get basic items to affected populations at scale? 

Sky Life (http://skylifetech.com/homepage/) have developed a system which delivers essential items like food, water, first aid kits to people over a wide area. It works similar to leaflet drops but with a difference. Boxes are dropped from planes which open up whilst still airborne. Small packages which are light enough to cause injury can be delivered over a wide area in an urban setting.

airdrop 2During a crisis such as an earthquake, people need information about where they might be able to get help. Its during disasters like earthquakes where infrastructure may be damaged and prevents radio stations and mobile networks from operating. The tradition method of leaflet drops may have limited value in some communities where literacy rates are high.

Sky Life have developed a technical solution to make the task of delivering messages more efficient. For a number of years, it has been possible to buy cheap greeting cards which have some cheap electronics built in to play a song or a pre-recoded message. The Live Leaf is a card which will play a pre-recorded message about where help can be found.

The innovation does not stop at messaging. Sky Life is developing a more technical version of the live leaf which has a built in AM or FM radio receiver tuned to the correct frequency where up to date information will be broadcast.

Other developments in the pipeline include a GPS tracker and two way communications. People will be able to let emergency responders know what sort of aid is needed. Signals would be picked up by aircraft which may be in range.

Skylife have developed the technology to load new messages onto Life Leaf quickly so that up iodate messages  can be loaded on the card immediately before planes depart from adjacent countries to the disaster.

drone 1The eye in the sky
“Drones” have been in the media for some time now and mainly for the wrong reasons. Large military drones are used to gather intelligence and to launch weapons, so the use of the word “Drone” can cause a great deal of concern in some countries. Smaller lightweight drones have been used during humanitarian response, most recently in Nepal. In the aid sector, people prefer to use the term Unmanned Aerial Vehicle or UAV. These aerial platforms have been used to film affected areas using high definition cameras. In some emergencies, getting a birds eye view of a situation will enable humanitarian aid coordinators to map out what assistance is needed  and where.

UAVs are lightweight and can be deployed instantly. Before UAVs appeared, NGOs had to rely on film footage from light aircraft and helicopters, an expensive solution which may not always be available due to airport access and operational costs.

Dan Office IT (http://www.danoffice.com/uav-drone/multi-rotor-uavs.aspx) is a leading supplier of UAVs to NGOs. They have deployed to a number of recent disasters and have supported the response community by providing aerial footage to NGOs.

drone 2UAVs have become very popular for leisure use in recent years. UAVs are mass produced to various qualities and many cheaper UAVs are made to poor quality. As UAVs are remote control, it is really important that good quality UAVs are purchased which has the required range. Beware of the low grade UAVs which operate over Wi-Fi as they go out of range after just over 100 metres.

Helicopter style UAVs are best suited to very local operations. Battery life is often quite short. For longer range reconnaissance, we still need to rely on traditional aviation, but Dan Office are planning to bring fixed wing UAVs to the market. The UAV in the picture has the ability to take of vertically.

So far UAVs are mainly used for filming, but as the technology advances they might be able to achieve much more. For example UAVs could be used to act as a communications relay between the Live Leaf technologies?  Larger UAVs might be able to carry out air drops.

There could be some challenges to operating UAVs as various countries are trying to regulate their use. In the USA, laws exists which forbids UAVs from being used near to public buildings. The CAA are serious considering setting up a registration system due to the high volume of UAVs being purchased for personal use. In other countries, the use of UAVs may be regulated by various state departments such as civil aviation,  military, police, data protection and perhaps communications. Data protection can be very sensitive as people may wish to assert their privacy from overhead cameras.

3d pThe small industrial revolution
I have been to plenty of events and trade shows where various organisations have demonstrated 3D printing. On each occasion these new machines have produced a perfectly formed rabbit, a model of the Eifel Tour or some other worthless piece of plastic. I am sure many other would have asked what is the point of 3D printing?  Why should we spend money on this toy?  Is this yet another solution looking for a problem to fix?

During the Aidex Expo in Brussels, one organisation managed to convince me that perhaps 3D printing could be useful to the aid sector. The key area where I can see this technology adding some value is for plumbing parts. Water and sanitation systems have many types of joints and valves and over time things wear out. Getting replacement parts can be a major challenge. It may be impractical due to lack of storage space and finance to hold a vast stock of spares, so what if we started a new industrial revolution to make our own spares on site? 

3D printers are now readily available and come in all sorts of sizes. Currently items are made from plastic. Complex 3D printers exists which can produce items made from metal, but this sort of technology is expensive and found in industries such as Space, Aviation and Defence.

Plastic is good for now. We can replace existing plastic parts with new parts we can make ourselves on site. 3D printing can be a great enabler for making items out of other materials. The method is really simple, use a 3D printer to create a mould and from that, you can create plenty of objects at high volume.

3D printers are just one part of the solution. To create objects, special software is need to be installed on a connected computer to turn a design into an actual object. In the emergency setting, if an engineer needs a new widget designed quickly, online communities now exists who will design objects for you.

As 3D technology advances, the way we procure many things may be disrupted. We are nowhere near being able to produce really complex working items such as computers using 3D printing, but I can see 3D printing having a disruptive impact on simple construction items such as plumbing. This could be a great opportunity for small business as a local shop will have the capacity to deliver a vast range of products from a 3D Printer.

Initially, the key challenges to disruptive change will not be the technology, it will be intellectual property rights. People who design and patent designs will realise a small royalty on every item made and sold. Copying existing parts will start to attract legal challenges. In due course a design license solution is likely to appear which ensures that an inventor gets a fee for each fee a 3D printer makes. No doubt the 3D Intellectual Property will suffer the same challenges as the software industry.